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Identifying the ecological processes that structure communities
and the consequences for ecosystem function is a central goal of
ecology. The recognition that fungi, bacteria, and viruses control
key ecosystem functions has made microbial communities a major
focus of this field. Because many ecological processes are apparent
only at particular spatial or temporal scales, a complete under-
standing of the linkages between microbial community, environ-
ment, and function requires analysis across a wide range of scales.
Here, we map the biological and functional geography of soil
fungi from local to continental scales and show that the principal
ecological processes controlling community structure and function
operate at different scales. Similar to plants or animals, most soil
fungi are endemic to particular bioregions, suggesting that factors
operating at large spatial scales, like dispersal limitation or climate,
are the first-order determinants of fungal community structure in
nature. By contrast, soil extracellular enzyme activity is highly
convergent across bioregions and widely differing fungal commu-
nities. Instead, soil enzyme activity is correlated with local soil
environment and distribution of fungal traits within the commu-
nity. The lack of structure –function relationships for soil fungal
communities at continental scales indicates a high degree of func-
tional redundancy among fungal communities in global biogeo-
chemical cycles.
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The structure and function of ecological communities are in-
timately linked, such that the number and identity of species

within a community often affect the key ecosystem properties of
primary productivity (1), resistance and resilience to disturbance
(2), and rates of nutrient cycling (3). However, understanding the
extent to which structure–function relationships hold across
communities and over large spatial scales continues to be a ma-
jor goal of ecological research. Identifying these relationships for
microbial organisms is particularly critical, because these or-
ganisms control rates of key ecosystem processes (the cycling of
nitrogen, phosphorus, and carbon) (4) and directly affect the
community structure of plants and animals through pathogenic
or mutualistic interactions (5). As such, microbial activity is also
intrinsic to Earth system models that inform citizens and policy
makers of ecosystem dynamics and energy exchange between the
biosphere and the atmosphere (6). As in plant communities of
tropical rainforests (7), the incredible number of microbial taxa
on Earth has been a challenge for understanding the link between
diversity and function. Advances in DNA sequencing technology
have recently allowed for a robust characterization of bacterial
biogeographic patterns (8); however, to date, studies have exam-
ined structure–function relationships at a fixed scale (9–12). As a
result, it is not yet clear how microbial function is linked to large-
scale biogeographic patterns, whether or not this link is a more
reliable determinant of microbial function in global biogeochem-
ical cycles than other environmental factors, or how these rela-
tionships vary across geographic regions.

Certain ecological processes are only apparent or important
at a particular scale (13), so a comprehensive understanding of
microbial systems requires observation of community–environ-
ment–function interactions at multiple scales. A popular hypo-
thetical framework that integrates spatial scale with ecological
processes is a filter-type model (14, 15), where species pools are
initially determined by processes at large spatial scales (16, 17),
like evolutionary history or the presence of major dispersal barriers
(dispersal filter). Environmental conditions then determine which
species within the pool are able to colonize a particular habitat
(environmental filter), and coexistence at smaller spatial scales is
determined by niche differences and competition (biotic filter)
(18, 19). Historically, a widely invoked assumption has been that
the function of soil microbial communities is set primarily by the
environmental filter, such that abiotic factors determine the
physiology of whole microbial communities (20, 21). Recently,
studies that have explicitly considered the composition and diver-
sity of microbial communities at the local scale have also observed
relationships between community composition and biochemical
function of microbes in soils (9, 22), suggesting that the structure
of microbial communities, per se, may be important. However,
it is unclear if a link between community structure and func-
tion for microbial communities operates on a larger scale, inde-
pendent of environment. If so, then knowing the structure of
regional species pools will be important for understanding the
function of microbial communities over large geographic regions.
Alternatively, structure–function relationships may break down if
there is high functional redundancy among the many microbial
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Microbes control vital ecosystem processes like carbon storage
and nutrient recycling. Although megadiversity is a hallmark of
microbial communities in nature, we still do not know how
microbial diversity determines ecosystem function. We ad-
dressed this issue by isolating different geographic and local
processes hypothesized to shape fungal community composi-
tion and activity in pine forests across the continental United
States. Although soil enzyme activity varied across soils ac-
cording to resource availability, enzyme activity was similar
across different fungal communities. These observations in-
dicate that much of fungal diversity plays an equal role in soil
biogeochemical cycles. However, soil fungal communities vary
dramatically in space, indicating that individual species are
endemic to bioregions within the North American continent.
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