Letter to the Editor

Estimation of Nucleotide Substitution Rates in Eurotiomycete Fungi

Takao Kasuga,* Thomas J. White, \dagger and John W. Taylor*
*Department of Plant and Microbial Biology, University of California-Berkeley; and \dagger Celera Diagnostics, Alameda, California

In the entire fungal kingdom, only DNA substitution rates in the SSU rRNA gene (Berbee and Taylor 1993, 2001) and amino acid substitution rates (Heckman et al. 2001) have been estimated and used to date fungal divergences. However, these molecules are not sufficiently variable to date events at or below the genus level. DNA sequences of protein-coding genes and the internal transcribed spacer (ITS) region are sufficiently variable, but their substitution rates are not known. In this article, we investigated the DNA substitution rates in the protein-coding genes and the ITS region by comparison with the $S S U r D N A$ divergence in a representative fungal lineage, Eurotiomycetes (=plectomycetes) (Eriksson and Winka 1998). The Eurotiomycete lineage is a monophyletic class of Ascomycota (Berbee and Taylor 1992) and includes many economically important fungi, such as Penicillium chrysogenum (antibiotic production) and Aspergillus oryzae (soy sauce production), as well as many human pathogens such as Coccidioides immitis (lung disease), Histoplasma capsulatum (lung disease), and Trichophyton rubrum (athlete's foot). Estimating DNA substitution rates in quickly evolving molecules such as the ITS and protein-coding genes will not only provide a means to estimate the divergence times between lineages at and below the genus level, but in conjunction with coalescent theory, it may provide information for estimating epidemiological parameters such as effective population size (Watterson 1975) and recombination rates (Hey and Wakeley 1997).

With the aid of published Eurotiomycete phylogenies based on SSU rDNA (Ogawa, Yoshimura, and Sugiyama 1997; Sugiyama, Ohara, and Mikawa 1999), we searched for pairs of closely related species which had not only $S S U$ rDNA sequences but also sequences of homologous protein-coding genes. Next, we compared the extent of differentiation at synonymous sites of pro-tein-coding genes between sister taxa. It was found that saturation at synonymous sites of protein-coding loci is attained before divergence of the $S S U r D N A$ sequences reaches $1 \%-2 \%$. A $1 \%-2 \%$ divergence usually corresponds to divergences seen within a genus or among closely related genera. Therefore, the protein genes should be well suited to dating divergences at and below the genus level.

[^0]In this paragraph we briefly outline our methodology. The first step of our approach was to estimate the divergence times between sister species from the $S S U$ rDNA phylogenetic tree (Ochman and Wilson 1987; Ochman, Elwyn, and Moran 1999). Twenty-seven Eurotiomycete species and two out-group taxa, i.e., the Sordariomycete Neurospora crassa and the loculoascomycete Capronia pilosella, were subjected to distance analysis. The regularity of nucleotide substitution rates at the $S S U r D N A$ gene was evaluated by the two-cluster test and the branch length test (Takezaki, Rzhetsky, and Nei 1995; Nei and Kumar 2000). Rates were not found to be constant for six species and four nodes using the branch length test and the two-cluster test, respectively ($P<0.05$, data not shown). Apparently, rate constancy does not hold throughout this system. Because rates may not be constant, we also considered a model in which molecular evolutionary rates vary across lineages instead of remaining constant. We compared the Langley Fitch (LF) algorithm, which assumes rate constancy, with the nonparametric rate-smoothing (NPRS) algorithm, which does not (Langley and Fitch 1974; Sanderson 1997). All methods of phylogenetic inference depend heavily on their underlying models. For this reason we used a hierarchical likelihood ratio test to search for the DNA substitution model that best fit our $S S U r D N A$ data set (Posada and Crandall 1998). Phylogenetic relationships were then inferred using the selected evolutionary model and the heuristic search option for maximum likelihood (ML) implemented in PAUP 4.0b8a (Swofford 2001). The ML tree obtained was then used to estimate the divergence times between closely related taxa using the NPRS and LF methods. A simple and widely used Kimura two-parameter model was also used to construct a neighbor-joining (NJ) tree; the NJ tree was also subjected to the NPRS and LF methods as a comparison. Both NPRS and LF methods require at least one calibration point to fit branch lengths to the geological time scale. We used the divergence of Eurotiomycetes ($=$ plectomycetes) and Sordariomycetes (=pyrenomycetes) for calibration. Initially, the divergence was set to 100 arbitrary units, and the relative divergence times between taxa were estimated (fig. 1; details are available in Supplementary Material at http:// www.molbiolevol.org/). For all pairs of taxa, the NPRS algorithm gave 15.2% to 87.5% larger values for divergence times than did the LF algorithm. For both NPRS and LF algorithms, most of the divergence values calculated from the NJ tree with a Kimura two-parameter algorithm were larger than those from the ML tree; NJ values were up to 48.6% larger than ML values. A simulation study indicated that divergence times are estimated more accurately using NPRS rather than LF when (1) there are enough data, (2) evolution is not clock-

FIG. 1.-Estimation of divergence times according to the NPRS (a) and LF (b) methods. Branch lengths are proportional to time. Either of the three published values $(310,400$, or 670 Myr$)$ for the ES divergence time can be used to calibrate the trees. The tree topology was obtained through the heuristic search for ML implemented in PAUP 4.0b8a (Swofford 2001) using the Tamura Nei DNA substitution model with equal base frequencies, among-site rate variation Gamma (0.6431), and the proportion of sites unable to accept substitutions (0.6425). Aligned sequences have been deposited in TreeBase (study accession number S804, www.treebase.org/treebase/).
like, and (3) levels of rate autocorrelation are moderate to high (Sanderson 1997). Unfortunately, although we believe we have sufficient data ($1,631 \mathrm{bp}$), we have no way of assessing the other parameters, so we have used the divergence times of both the NPRS and the LF methods, hoping to account for the ambiguity of the past.

As mentioned above, the NPRS and LF algorithms give only relative divergence times, which may be understood as a percentage of the time since the divergence of Eurotiomycetes and Sordariomycetes (ES). This ES divergence time can be inferred from the fossil record or estimated by molecular clock approaches, both of which again require calibration points from fossils. The oldest well-documented ascomycete fossils are the perithecia, asci, and ascospores that resemble those of extant Sordariomycetes and are found in the 400-Myr-old Rhynie chert (Taylor, Hass, and Kerp 1999). Thus, 400 Myr for the ES divergence would seem to provide a conservative date; however, earlier dates can be expected. The ES divergence time estimated from a molecular clock approach largely depends on a fundamental calibration point: the fungi-animal or fungi-animal-plant divergence time. Berbee and Taylor (Berbee and Taylor 2001) calibrated an $S S U$ rDNA phylogenetic tree using a fungianimal divergence time of 965 Myr (Doolittle et al. 1996) and estimated the ES divergence to be 310 Myr . Heckman et al. (2001) used a fungi-animal-plant divergence time of $1,576 \mathrm{Myr}$, and their protein diversity analyses yielded an ES divergence of 670 Myr. The 310Myr date is probably too recent, judging from the fossil evidence, and the $670-\mathrm{Myr}$ date provides a more ancient estimate. We used three values, 310, 400, and 670 Myr ,
as calibration points for estimation of the divergence times between closely related Eurotiomycete species.

Our goal was to estimate DNA substitution rates at six independent protein-coding loci and the ITS of the $r D N A$ repeat unit. To obtain substitution rates, we required estimates for divergence times and genetic distances between sister species. Divergence times between sister species of Eurotiomycete fungi were estimated using NPRS and LF algorithms based on three calibration times corresponding to the three estimates of ES divergence; hence, a total of six rate estimates were calculated for each of the species pairs (table 1). For class 1 chitin synthase (CHS1), class 2 chitin synthase (CHS2), zinc finger protein (creA), and orotidine-5'-phosphate decarboxylase ($p y r G$), four different measures of genetic distance were calculated: DNA substitutions in synonymous sites $\left(K_{S}\right)$, nonsynonymous sites $\left(K_{A}\right)$, the third bases of codons ($K_{3 \mathrm{rd}}$), and exons. Introns were not included in these data sets. The modified Nei-Gojobori method implemented in MEGA2.0 (Kumar et al. 2000) was used to estimate K_{S} and K_{A}. The Kimura two-parameter model was used for all the other distance measures. Large parts of the data sets for ADP-ribosylation factor (arf) and alpha tubulin (tubl) are intron sequences, so for these loci four measures of genetic distance were calculated: DNA substitutions in exons, introns, $K_{3 \mathrm{rd}}$, and K_{S}. There were no nonsynonymous substitutions in the arf or tubl loci.

The most data were available for CHS1, which was found in 4 out of 10 pairs of sister species. We used these data to evaluate how estimates of nucleotide substitution varied in different regions of the Eurotiomycete
Table 1
Estimates for Nucleotide Substitution Rates According to NPRS and LF Algorithms. Divergence Times were Estimated from the Tamura Nei ML Tree in Figure 1.
There are Three Rate Estimates at Each Site for Each of the Algorithms Because of the Three ES Calibration Time Points 310, $\mathbf{4 0 0}$, and 670 Myr

Locus and Species Pair	Accesson No. and Locus	Site	L (bp)	$\begin{gathered} \text { DNA } \\ \text { DIS- } \\ \text { TANCEb } \end{gathered}$	Rate Estimates at the Given ES Calibration time Points (10^{-9} substitutions site per year)						Reference
					NPRS			LF			
					310 Myr	400 Myr	670 Myr	310 Myr	400 Myr	670 Myr	
CHSI											
Divergence time estimates . Histoplasma capsulatum, Blastomyces dermatitidis .	$\begin{aligned} & \text { M82947, } \\ & \text { M82942 } \end{aligned}$				99.1 Myr	127.8 Myr	214.1 Myr	24.6 Myr	31.8 Myr	53.3 Myr	
		Exons	561	0.15	0.75	0.58	0.35	3.00	2.33	1.39	Bowen et al. (1992)
		Third bases	187	0.52	2.63	2.04	1.22	10.57	8.19	4.89	Nino-Vega et al.
		Synonymous	153	0.69	3.49	2.70	1.61	14.02	10.86	6.49	(2000)
		Nonsynonymous	408	0.02	0.09	0.07	0.04	0.34	0.27	0.16	
Divergence time estimates. Arthroderma incurvatum, Trichophyton rubrum .	$\begin{aligned} & \text { AB003582, } \\ & \text { AB005793 } \end{aligned}$				26.8 Myr	34.6 Myr	58.0 Myr	11.5 Myr	14.8 Myr	24.8 Myr	
		Exons	561	0.12	2.31	1.79	1.07	5.41	4.19	2.50	
		Third bases	187	0.39	7.23	5.61	3.35	16.91	13.11	7.83	
		Synonymous	153	0.49	9.14	7.08	4.23	21.36	16.55	9.88	
		Nonsynonymous	408	0.03	0.47	0.36	0.22	1.09	0.84	0.50	
Divergence time estimates. Malbranchea dendritica, M. filamentosa.	$\begin{aligned} & \text { L28071, } \\ & \text { L28072 } \end{aligned}$				43.7 Myr	56.4 Myr	94.4 Myr	16.0 Myr	20.6 Myr	34.5 Myr	
		Exons	561	0.61	1.82	1.41	0.84	4.98	3.86	2.30	
		Third bases	187	0.42	4.84	3.75	2.24	13.25	10.27	6.13	
		Synonymous	153	0.62	7.14	5.54	3.30	19.54	15.15	9.04	
		Nonsynonymous	408	0.04	0.48	0.37	0.22	1.32	1.02	0.61	
Divergence time estimates . Coccidioides immitis, Uncinocarpus reesii	$\begin{aligned} & \text { L28067, } \\ & \text { L28069 } \end{aligned}$									14.1 Myr	
					52.0 Myr	67.1 Myr	112.4 Myr	6.5 Myr	8.4 Myr		
		Exons	561	0.23	2.20	1.71	1.02	17.59	13.63	8.14	
		Third bases	187	0.88	8.43	6.53	3.90	67.28	62.14	31.13	
		Synonymous	153	1.20	11.53	8.94	5.34	92.09	71.37	42.61	
		Nonsynonymous	408	0.05	0.49	0.38	0.23	3.92	3.04	1.81	
CHS2	M82949, M82943										
Divergence time estimates H. capsulalum, B. dermatitidis.					99.1 Myr	127.8 Myr	214.1 Myr	24.6 Myr	31.8 Myr	53.3 Myr	
											Bowen et al. (1992) Nino-Vega et al. (2000)
		Exons	567	0.14	0.69	0.53	0.32	2.76	2.14	1.28	
		Third bases Synonymous	189	0.45	2.25	1.74	1.04	9.03 11.50	7.00	4.18	
		Synonymous Nonsynonymous	154.7 412.3	0.57 0.02	2.86 0.11	2.22 0.08	1.32 0.05	11.50 0.43	8.92 0.33	5.32 0.20	
creA											
Divergence time estimates Aspergillus niger, A. orizae	$\begin{aligned} & \text { L03811, } \\ & \quad \text { AJ272151 } \end{aligned}$				34.0 Myr	43.9 Myr	73.6 Myr	15.7 Myr	20.2 Myr	33.9 Myr	
		Exons	1284	0.29	4.25	3.29	1.96	9.21	7.14	4.26	Drysdale et al. (1993)
		Third bases	428	1.15	16.85	13.06	7.80	36.56	28.33	16.92	
		Synonymous	358.6	1.47	21.62	16.76	10.00	46.92	36.36	21.71	
		Nonsynonymous	904.4	0.08	1.18	0.90	0.54	2.52	1.95	1.17	

Table 1

Locus and Species Pair	Accesson No. and Locus	Site	L (bp)	$\begin{gathered} \text { DNA } \\ \text { DIS- } \\ \text { TANCE } \end{gathered}$	Rate Estimates at the Given ES Calibration time Points (10^{-9} substitutions site per year)						Reference
					NPRS			LF			
					310 Myr	400 Myr	670 Myr	310 Myr	400 Myr	670 Myr	
pyrG											
Divergence time estimates Aspergillus fumigatus, A. niger ${ }^{\mathrm{a}}$	$\begin{aligned} & \text { Y11303, } \\ & \mathrm{X} 96734 \end{aligned}$				34.0 Myr	43.9 Myr	73.6 Myr	15.7 Myr	20.2 Myr	33.9 Myr	$\begin{gathered} \text { Weidner } \\ (1998) \end{gathered} \text { et }$
		Exons	834	0.24	3.51	2.72	1.62	7.62	5.90	3.52	
		Third bases	278	0.79	11.60	8.99	5.37	25.18	19.52	11.65	
		Synonymous	229.7	1.00	14.69	11.38	6.80	31.88	24.70	14.75	
		Nonsynonymous	601.3	0.07	1.03	0.08	0.48	2.23	1.73	1.03	
arf											Kasuga et al. (1999)
Divergence time estimates. H. capsulatum, B. dermatitidis.	$\begin{aligned} & \text { AF072341, } \\ & \text { AY013310 } \end{aligned}$				99.1 Myr	127.8 Myr	214.1 Myr	24.6 Myr	31.8 Myr	53.3 Myr	
		Exons	280	0.06	0.28	0.22	0.13	1.13	0.88	0.52	
		Introns	174	0.48	2.42	1.88	1.12	9.74	7.55	4.51	
		Third bases	94	0.15	0.78	0.60	0.36	3.12	2.42	1.45	
		Synonymous	78.8	0.22	1.11	0.86	0.51	4.46	3.46	2.07	
tbul											Kasuga et al. (1999)
Divergence time estimates H. capsulatum, B. dermatitidis	AY013312, AY013313				99.1 Myr	127.8 Myr	214.1 Myr	24.6 Myr	31.8 Myr	53.3 Myr	
		Exons	52	0.10	0.53	0.41	0.24	2.13	1.65	0.98	
		Introns	213	0.49	2.49	1.93	1.15	10.01	7.76	4.63	
		Third bases	18	0.28	1.39	1.08	0.64	5.59	4.33	2.58	
		Synonymous	15.6	0.31	1.58	1.23	0.73	6.37	4.94	2.95	
ITS											
Divergence time estimates ...	$\begin{aligned} & \text { AF322377, } \\ & \text { AF322388 } \end{aligned}$				99.1 Myr	127.8 Myr	214.1 Myr	24.6 Myr	31.8 Myr	53.3 Myr	
H. capsulatum, B. dermatitidis			327	0.21	1.08	0.83	0.50	4.33	3.35	2.00	
		ITS1, ITS2 and			1.08	0.83	0.50	4.33	3.35	2.00	
Divergence time estimates . Arthroderma incurvatum, T. rubrum		5.8S rDNA	529	0.14	0.73	0.57	0.34	2.84	2.28	1.36	
	$\begin{aligned} & \mathrm{AF} 166129, \\ & \mathrm{AF} 170472 \end{aligned}$				26.8 Myr	34.6 Myr	58.0 Myr	11.5 Myr	14.8 Myr	24.8 Myr	
		ITS1 and ITS2	360	0.25	4.58	3.55	2.12	10.71	8.30	4.95	
		ITS1, ITS2 and									
		5.8S rDNA	518	0.16	3.06	2.37	1.41	7.15	5.54	3.31	
Divergence time estimates Eremascus albus, Ascosphaera apis	$\begin{aligned} & \text { U18359, } \\ & \text { U18362 } \end{aligned}$				106.0 Myr	136.8 Myr	229.1 Myr	45.8 Myr	59.0 Myr	98.9 Myr	
		ITS1 and ITS2	337	0.28	1.34	1.04	0.62	3.10	2.40	1.44	
		ITS1, ITS2 and						3.10	2.40		
		5.8 S rDNA	494	0.18	0.87	0.67	0.40	2.01	1.55	0.93	
Divergence time estimates ... Penicillium chrysogenum, Eupenicillium crustaceum .	$\begin{aligned} & \text { AF034857, } \\ & \text { AF033466 } \end{aligned}$				4.5 Myr	5.8 Myr	9.6 Myr	1.7 Myr	2.2 Myr	3.8 Myr	
			342	0.01	1.32	1.02	0.61	3.40			
		ITS1, ITS2 and	342		1.32	1.02	0.61	3.40	2.63	1.57	
		5.8S rDNA	531	0.01	0.85	0.66	0.39	2.18	1.69	1.01	

Table 1

Locus And Species Pair	Accesson No. and Locus	Site	L (bp)	DNA DISTANCE ${ }^{\text {b }}$	Rate Estimates at the Given ES Calibration time Points (10^{-9} substitutions site per year)						Reference
					NPRS			LF			
					310 Myr	400 Myr	670 Myr	310 Myr	400 Myr	670 Myr	
Divergence time estimates... Eurotium rubrum, Aspergillus fumigatus .\qquad	$\begin{aligned} & \text { U18357, } \\ & \text { AF109330 } \end{aligned}$	ITS1 and ITS2 ITS1, ITS2 and 5.8S rDNA			23.8 Myr	30.7 Myr	51.5 Myr	11.5 Myr	15.0 Myr	25.1 Myr	
			302	0.38	7.92	6.14	3.66	16.21	12.56	7.50	
			459	0.23	4.77	3.69	2.21	9.76	7.56	4.52	
Divergence time estimates . . . Byssochlamys nivea, Thermoascus crustaceus. . .	$\begin{aligned} & \text { U18361, } \\ & \text { U18353 } \end{aligned}$				80.8 Myr	104.2 Myr	174.5 Myr	36.9 Myr	50.2 Myr	84.0 Myr	
		ITS1 and ITS2	335	0.16	1.02	0.79	0.47	2.12	1.84	0.98	
		$\begin{aligned} & \text { ITS1, ITS2 and } \\ & 5.8 \mathrm{~S} \text { rDNA } \end{aligned}$	492	0.11	0.71	0.55	0.33	1.48	1.14	0.68	

${ }^{\mathrm{b}}$ DNA distance was estimated using the Kimura two-parameter method.
clade and how estimates were influenced by assumptions of rate constancy or rate variability (LF vs. NPRS), the substitution model (ML vs. NJ), or the ES divergence value (310,400 , or 670 Myr). Using data for all four pairs of species, K_{S} for CHSl varied 4.7 -fold between the NPRS and LF algorithms, 1.5 -fold between the ML-Tamura Nei and NJ-Kimura two-parameter models, and 2.2 -fold over the three ES calibration points. The average synonymous substitution rates K_{S} estimated with NPRS and the three ES values were 7.8 $\pm 3.4 \times 10^{-9}(310 \mathrm{Myr}), 6.1 \pm 2.6 \times 10^{-9}(400 \mathrm{Myr})$, and $3.0 \pm 1.3 \times 10^{-9}(670 \mathrm{Myr})(n=4 ; \pm$ values are one standard deviation). The average K_{S} value estimated with LF and an ES of 400 Myr was $28.5 \pm 28.7 \times$ 10^{-9}. Most of the variation could be explained by use of the LF algorithm or the NPRS algorithm and its underlying assumptions of rate constancy or variability. In spite of the several sources of variation, K_{S} estimates ranged only from 10^{-9} to 10^{-8}

Only one pair of sister species could be used for substitution rate estimation in the remaining proteincoding loci, CHS2, creA, pyrG, arf, and tub1. K_{S} values for these genes are also in the range of $10^{-9}-10^{-8}$. The K_{S} values for the four species pairs at the CHS1 and one value for each of the CHS2, creA, pyrG, arf, and tubl loci gave the average of $6.3 \pm 5.4 \times 10^{-9}(n=9)$ when the ES divergence of 400 Myr and NPRS were used. On average, in CHS1, CHS2, creA, and pyrG, synonymous substitutions were found to accumulate about 22 times faster $\left(K_{S} / K_{A}=22.2 \pm 8.4, n=7\right)$ than nonsynonymous substitutions. This value is higher than the average ratio of Drosophila genes ($K_{S} / K_{A}=8.2$) but is not an extreme value (Li 1997). The K_{S} / K_{A} ratio is positively influenced by both the intensity of negative selection and the population size.

The arf and tubl data sets consist of exons and introns, for which rates were estimated separately. At arf and tubl loci, introns mutate 2.2 and 1.6 times faster than synonymous sites and 8.6 and 4.7 times faster than all sites in exons, respectively.

The ITS in the rDNA repeat unit have been widely used for phylogenetic studies (e.g., Berbee et al. 1995; Cullings, Szaro, and Bruns 1996) and population studies (e.g., O'Donnell 1992; Kasuga et al. 1993). DNA substitution rates were estimated using six pairs of sister species. Unlike with protein-coding genes such as CHS1 (Bowen et al. 1992) and RPB2 (Liu, Whelen, and Hall 1999), multiple alignment of DNA sequences from species belonging to different genera was impossible due to the frequent occurrence of indels. The length at the spacer regions (ITS1 + ITS2) varied greatly between the species used in this study, ranging from 302 to 372 bp . DNA substitution rates at the ITS region (ITS1, ITS2 + 5.8S rDNA) vary extensively between lineages, and the average was $1.4 \pm 1.3 \times 10^{-9}(n=5)$ when the NPRS and an ES divergence of 400 Myr were used. Despite the large functional difference between the ITS region and the protein-coding genes, DNA substitution rates are found to be comparable. In a wide range of plants, substitution rates at the ITS region fall between 1.72×10^{-9} and 7.83×10^{-9} (Richardson et al. 2001). Therefore,
estimates for Eurotiomycetes are comparable to the lower values for plants.

Neutral Mutation Rates Across Kingdoms

Overall, neutral mutation rates in protein-coding genes, which were measured as synonymous substitution rates or approximated as substitution rates at the third bases of codons, ranged from 0.9×10^{-9} to 16.7 $\times 10^{-9}$ substitutions per site per year (NPRS and ES $=$ $400 \mathrm{Myr})$. These values are in the range of DNA substitution rates in most of the protein-coding genes in plants (Gaut et al. 1996), animals (Li 1997), and bacteria (Ochman, Elwyn, and Moran 1999). For example, synonymous substitution rates in cereals are in the range of 5.1×10^{-9} to 7.1×10^{-9} (Wolfe, Sharp, and Li 1989). In mammals, rates were between 1.6×10^{-9} and $6.4 \times$ 10^{-9}, and in Drosophila, rates were between 3.7×10^{-9} and 30.0×10^{-9} (Li 1997; Moriyama and Powell 1997). In Escherichia coli and Salmonella typhimurium, substitution rates varied from 0.14×10^{-9} to 5.6×10^{-9} (Ochman and Wilson 1987). Although neutral mutation rates vary across loci, their range is surprisingly constant among the four major clades plants, animals, bacteria, and fungi in spite of the enormous differences in cellular organization, body size, generation time, and ecology of these organisms.

Acknowledgments

The authors are grateful to Michael Sanderson at the University of California at Davis, Chen Su and He len Piontkivska at Pennsylvania State University, and Naoko Takezaki at the Max Planck Institute for helping with data analysis; Masato Sugiyama at Mitsubishi Chemical for sharing unpublished data with us; and Anne Pringle for comments on the manuscript. Financial support for this work was provided by the National Institutes of Health (grant A1 43491 to J.W.T.).

LITERATURE CITED

Berbee, M. L., and J. W. Taylor. 1992. Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol. Biol. Evol. 9:278-284.
_- 1993. Dating the evolutionary radiations of the true fungi. Can. J. Bot. 71:1114-1127.
-_. 2001. Fungal molecular evolution: gene trees and geologic time. Pp. 229-246 in D. J. McLaughlin, E. McLaughlin, and P. A. Lemke, eds. The Mycota. Springer, Berlin.
Berbee, M. L., A. Yoshimura, J. Sugiyama, and J. W. TayLOR. 1995. Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from $18 \mathrm{~S}, 5.8 \mathrm{~S}$, and ITS ribosomal DNA sequence data. Mycologia 87:210222.

Bowen, A. R., J. L.-P. Chen-Wu, M. Momany, R. Young, P. J. Szaniszlo, and P. W. Robbins. 1992. Classification of fungal chitin synthases. Proc. Natl. Acad. Sci. USA 89:519523.

Cullings, K. W., T. M. Szaro, and T. D. Bruns. 1996. Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63-66.

Doolittle, R. F., D. F. Feng, S. Tsang, G. Cho, and E. LitTLE. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470-477.
Drysdale, M. R., S. E. Kolze, and J. M. Kelly. 1993. The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130:241-245.
Eriksson, O. E., and K. Winka. 1998. Families and higher taxa of Ascomycota. Myconet 1:17-24.
Gaut, B. S., B. R. Morton, B. C. McCaig, and M. T. Clegg. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA 93:10274-10279.
Heckman, D. S., D. M. Geiser, B. R. Eidell, R. L. Stauffer, N. L. Kardos, and S. B. Hedges. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129-1133.
Hey, J., and J. Wakeley. 1997. A coalescent estimator of the population recombination rate. Genetics 145:833-846.
Kasuga, T., C. Woods, S. Woodward, and K. Mitchelson. 1993. Heterobasidion annosum 5.8s ribosomal DNA and internal transcribed spacer sequence: rapid identification of European intersterility groups by ribosomal DNA restriction polymorphism. Curr. Genet. 24:433-436.
Kasuga, T., J. W. Taylor, and T. J. White. 1999. Phylogenetic relationships of varieties and geographical groups of the human pathogenic fungus Histoplasma capsulatum Darling. J. Clin. Microbiol. 37:653-663.
Kumar, S., K. Tamura, I. Jakobsen, and M. Nei. 2000. MEGA: molecular evolutionary genetics analysis. Arizona State University, Tempe.
Langley, C. H., and W. Fitch. 1974. An estimation of the constancy of the rate of molecular evolution. J. Mol. Evol. 3:161-177.
Li, W.-H. 1997. Rates and patterns of nucleotide substitution. Pp. 177-213 in Molecular evolution. Sinauer Associates, Sunderland, Mass.
Liu, Y. J., S. Whelen, and B. D. Hall. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 16:1799-1808.
Moriyama, E. N., and J. R. Powell. 1997. Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes. J. Mol. Evol. 45:378-391.
Nei, M., and S. Kumar. 2000. Molecular clocks and linearized trees. Pp. 187-206 in Molecular evolution and phylogenetics. Oxford University Press, New York.
Nino-Vega, G. A., C. A. Munro, G. San-Blas, G. W. GooDAY, and N. A. R. Gow. 2000. Differential expression of chitin synthase genes during temperature induced dimorphic transitions in Paracoccidioides brasiliensis. Med. Mycol. 38:31-39.
Ochman, H., S. Elwyn, and N. A. Moran. 1999. Calibrating bacterial evolution. Proc. Natl. Acad. Sci. USA 96:1263812643.

Ochman, H., and A. C. Wilson. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:74-86.
O’Donnell, K. 1992. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr. Genet. 22:213-220.
Ogawa, H., A. Yoshimura, and J. Sugiyama. 1997. Polyphyletic origin of species of the anamorphic genus Geosmithia and the relationships of the cleistothecial genera: evidence from $18 \mathrm{~S}, 5 \mathrm{~S}$, and 28 S rDNA sequence analysis. Mycologia 89:756-771.

Posada, D., and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817818.

Richardson, J. E., R. T. Pennington, T. D. Pennington, and P. M. Hollingsworth. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242-2245.
SANDERSON, M. J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14:1218-1231.
Sugiyama, M., A. Ohara, and T. Mikawa. 1999. Molecular phylogeny of onygenalean fungi based on small subunit ribosomal DNA (SSU rDNA) sequences. Mycoscience 40: 251-258.
SWOFFORD, D. L. 2001. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Mass.
Takezaki, T., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and linearized tree. Mol. Biol Evol. 12:823-833.

Taylor, T. N., H. Hass, and H. Kerp. 1999. The oldest fossil ascomycetes. Nature 399:648
Watterson, G. A. 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7:256-276.
Weidner, G., C. D'Enfert, A. Koch, P. C. Mol, and A. A. Brakhage. 1998. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5'monophosphate decarboxylase. Curr. Genet. 33:378-385.
Wolfe, K. H., P. M. Sharp, and W. H. Li. 1989. Rates of synonymous substitution in plant nuclear genes. J. Mol. Evol. 29:208-211.

Julian Adams, reviewing editor

Accepted July 25, 2002

[^0]: Key words: synonymous substitution rates, molecular clock, plectomycete, fungi, evolution, ITS.

 Address for correspondence and reprints: Takao Kasuga, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, California 94720.
 E-mail: kasugat@uclink4.berkeley.edu.
 Mol. Biol. Evol. 19(12):2318-2324. 2002
 © 2002 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038

