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[31] Designing Experiments Using Spotted
Microarrays to Detect Gene Regulation Differences

Within and Among Species

By Jeffrey P. Townsend and John W. Taylor
Abstract

Comparative studies of genome-wide gene expression must account for
variation not only among species, but also within species. Such studies are
necessarily large in scale, because they incorporate experiments on multi-
ple individuals of multiple species in multiple developmental stages
in multiple environmental conditions. If the experiments are carefully
designed and performed, the data they provide are worth the effort. We
describe the utility of spotted microarrays for these studies and highlight
experimental design criteria that will maximize inferential and statistical
power. We conclude with a discussion of experimental protocols that are
designed for investigations of differential gene expression and their pitfalls.

Introduction

DNA microarrays have proved their worth in studies of development
and mutation using single experimental strains and will be even more useful
for the examination of natural genetic variation by the analysis of multiple
individuals from populations and species. DNA microarray technology has
particularly strong potential to illuminate studies of the molecular origin of
phenotype (Singh, 2003). Where there is variation in phenotype, there will
be underlying molecular correlates that will lead to a better understanding
of the phenotype. Even complex phenotypes that may involve multiple
metabolic and developmental pathways are approachable with appropriate
experimental design. Where there is variation within populations or among
species, questions about adaptation may be clearly framed. These questions
will be best addressed when fitness can be assayed at the same time point for
which transcription is profiled. For example, successful spore germination
may be assayed among different individuals.

Well-studied model organisms such as yeast or Escherichia coli are
ideal for this type of research because their genomes are sequenced,
microarrays are available, their biochemical metabolism and their cell
and molecular biology are well understood, and hypotheses about genes
can be tested using molecular genetic experiments. However, non–model
Copyright 2005, Elsevier Inc.
All rights reserved.

METHODS IN ENZYMOLOGY, VOL. 395 0076-6879/05 $35.00



TABLE I

Features and Drawbacks of Types of Probes for Microarrays

Type of

probe Genomea Annotatedb
Sensitivity to

divergence Completenessc Expense

Random

genomic

clones

No No Depends on

fragment size

Incomplete Low

cDNAs from

ESTs

No No Sensitive Incomplete Low

PCR

products

of ORFs

Yes Yes Sensitive Complete Laborious,

2 primers/

sequence

70-mers

designed

for ORFs

Yes Yes Very sensitive Complete,

low cross-

hybridization

Intermediate

25-mer

whole

genome

tiling arrays

Yes No Extremely

sensitive

Complete,

low cross-

hybridization

Expensive

Note: cDNA, complementary DNA; EST, expressed sequence tag; ORF, open reading

frame; PCR, polymerase chain reaction.
a Requires a known complete sequence for the organismal genome.
b Requires a well-annotated genome to design probes.
c Results in a complete description of genomic gene expression levels.
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systems are not excluded from microarray research. In fact, a useful micro-
array can be constructed from fragments of the genome of any organism and
used for competitive hybridization experiments to identify a pool of poten-
tially interesting genes. The fragments of interest may then be sequenced,
and their identification attempted through comparison with known
genes. Within fungi, this approach has been used to find genes involved in
Histoplasma capsulatum pathogenicity (Hwang et al., 2003). There are
many ways in which microarrays may be created, and each way has its
advantages and disadvantages (Table I). Here, we present guidelines for
experimental design of spotted DNA microarray studies, with particular
focus on the examination of variation among individuals or species.

Experimental Design

Use of Comparative Hybridizations

Microarray experimental designs are highly influenced by the particular
technology employed, and here we emphasize spotted microarray design.
The most salient feature of experimental design for spotted microarrays is
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their comparative nature. In each use, two samples of messenger RNA
(mRNA) are competitively hybridized to the deposited DNA, and the
comparison allows for the elimination of many spot-specific confounding
factors (Eisen and Brown, 1999; Townsend, 2004). In any experimental use
of spotted DNA microarrays, the first question to consider is ‘‘how should
samples of interest be compared?’’ Experimental design in this context may
be approached by the use of universal reference samples (Novoradovskaya
et al., 2004; Puskás et al., 2004), pooled samples, or circuits of comparisons.
For most purposes, circuits of comparisons have the greatest statistical
power to detect differences in gene expression among all samples examined
(Kerr and Churchill, 2001a; Townsend, 2003; Townsend and Hartl,
2002; Wolfinger et al., 2001; Yang and Speed, 2002); thus, this method of
experimental design is described here.

When comparisons are made in circuits, complex experiments can be
designed to accommodate three major axes of biological variation. The first
axis is that of genotype and is typically manifested in multiple individuals,
G1 . . . Gi, where i is the number of individuals and each individual is a
natural or mutational variant. The second axis includes any investigated
aspects of the environment, E1 . . . Ej, where j is the number of environ-
ments, typically comprising several experimental treatments, microhabi-
tats, or geographic locations. Lastly, a third axis along which samples are
frequently compared is an axis of developmental states, typically time
points in a developmental course or cycle, for example, T1 . . . Tk, where
k is the number of time points. Experimental designs incorporating one,
two, or three of these dimensions may be most clearly planned and
depicted using design graphs.
Graph Theoretical Depiction of Experimental Designs

Spotted microarray experimental designs are commonly depicted using
directed multigraphs (e.g., Fig. 1, a simple design incorporating all three
major axes of variation; see also Figs. 2A–C and 3A–C). In these graphs,
circular nodes represent samples of mRNA that have been harvested from
a particular genotype, environment, and developmental state. Arcs be-
tween nodes represent competitive hybridizations between the mRNAs.
This depiction is a multigraph because more than one arc can connect any
two nodes. The number of these replicated hybridizations, or arcs, is vital
to the degree of statistical significance for both large and small differences
in expression level. Simultaneous comparison of two mRNAs on a single
microarray is made possible by labeling the samples with two fluorescent
dyes. The direction of the arc in the diagram conventionally indicates
which sample is labeled with which fluorophore, (e.g., the pointed end



Fig. 1. A general example of spotted complementary DNA (cDNA) microarray

experimental design that incorporates interrogation of eight messenger RNA (mRNA)

samples from (A) two genotypes (G1 and G2), (B), two environments (E1 and E2) and (C) two

developmental states (T1 and T2). Nodes represent the mRNA samples, and arcs represent

competitive hybridizations. The direction of the arc indicates which mRNA sample was

labeled with which fluorophore (e.g., the blunt end indicates the node labeled with Cy5, and

the pointed end indicates the node labeled with Cy3). With eight mRNA samples, 24

competitive hybridizations are proposed. An additional 24 competitive hybridizations could

be made symmetrically by including direct comparisons across the diagonals of the cube graph

faces (i.e., G1E1T1 to G2E2T1, G2E1T1 to G1E2T1, etc.).
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indicates the complementary DNA [cDNA] labeled with Cy5, and the
blunt end indicates the cDNA labeled with Cy3). Between the fluorophore
and the DNA spotted, there is a small interaction effect on the hybridiza-
tion intensity, so it is recommended to perform two hybridizations with
‘‘flipped fluorophores’’ between any two samples that are to be directly
compared. This pair of replicates is indicated in a directed multigraph by a
pair of oppositely directed arcs (Fig. 1A).
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For a given mRNA sample, or node, the number of adjacent nodes is
the unweighted valence and the number of arcs is the weighted valence. In
Fig. 1A, each mRNA is to be competitively hybridized two times against
each of three other mRNAs, for a total of six hybridizations. Each node has
an unweighted valence of three and a weighted valence of six. Thus, the
weighting of the valence of a node in microarray experimental design is the
degree of experimental replication applied to that particular mRNA sam-
ple. To increase replication in the experimental design in Fig. 1, for exam-
ple, flipped-fluorophore cross-comparisons could be added to span from
corner to corner of each face of the cubic graph. These added comparisons
would increase the weighted valence of each node from 6 to 12 and allow
one to resolve differences in gene expression as low as 1:1.2 instead of 1:1.4
(see discussion of statistical significance).

If variation along an axis of interest is continuous or ordinal (e.g., a
quantitative genetic trait, a temperature gradient, a variable reagent concen-
tration, or a time course), the experiment should be designed to compare
each node with its nearest neighbors. This guideline ensures that the greatest
power is applied to the detection of differences between the most similar
samples. It might be argued that differences between the most similar sam-
ples are not of as much interest; in that case, the prudent action would be to
pare down the number of nodes in the design until all samples are of interest.

If variation along an axis of interest is discrete (e.g., wild type vs.
mutant, presence vs. absence of environmental contaminants, or a series
of developmentally plastic phenotypes), it is useful to compare each node
with the others in as symmetrical a fashion as possible. This guideline
ensures that there will be equivalent power to detect differences among
all nodes in your design. Of course, if one experimental node is of greater
interest, then it is sensible for your experimental design to feature a higher
valence for that node.

Generally, it is easy to design a microarray experiment that examines
many factors for their influence on gene expression in organisms. The
difficult part is carefully performing such an experiment. Our ability to
conceive of interesting variables to manipulate far exceeds our ability to
examine them. Figure 2 depicts a more complex example of an experiment
along the lines of Fig. 1, but with greater inferential power. However, this
experiment would require more than four times as many microarray
hybridizations as the experiment depicted in Fig. 1. Figure 3 depicts an
example of an experiment to jointly examine population and species varia-
tion in gene expression, and this design would need almost as many micro-
arrays as in the experiment depicted in Fig. 2. The technical requirements
of these fairly simple-to-conceive designs make clear how rapidly the
multiplicative examination of various influences on gene expression can



Fig. 2. A general example of an extensive spotted cDNA microarray experimental design,

incorporating factors including developmental state (T1 . . . T4), genotype (G1 . . . G4), and

environment (E1 . . . E3). Nodes (filled circles) represent 48 mRNA samples, and arcs

represent competitive hybridizations. The direction of the arc indicates which mRNA sample

was labeled with which fluorophore (e.g., the blunt end indicates the node labeled with Cy5,

and the pointed end indicates the node labeled with Cy3). (A) Circuit design for a time course.

Each ordinal time point has been compared to its neighbor, and additionally the last time

point has been compared to the initial time point. This design comprises eight microarrays and
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make experimental designs costly and time consuming. Fortunately,
spotted microarrays are not as expensive as other high-throughput expres-
sion analyses, and large numbers of arrays can be used. Completing all parts
of the experiments diagrammed in Fig. 1A–C or Fig. 2A–C as depicted in
Fig. 1D or Fig. 2D results in every experimental node possessing a weighted
valence of 12, as well as resolution of the significance of most differences in
gene expression of a factor of 1.2 or more. A key step after brainstorming
an interesting set of experiments lies in paring down those experiments so
they are feasible in both time and expense while retaining the essential
comparisons to answer the questions of importance in your system. This
stage of the design cannot be prescribed but will always belong to the
experimentalist, who must apply his or her expertise and insight to narrow
down the biological factors examined to those that are truly relevant.

Replication and Resolution of Differences in Gene Expression

Replication of microarray hybridizations is essential to precise infer-
ence of gene expression level (Lee et al., 2000; Pan et al., 2002). Flipping
fluorophores is one important method of replication. However, just two
hybridizations between a pair of nodes frequently are insufficient for the
resolution of small differences in gene expression. Closed circuit designs
like those in Figs. 1–3 help to increase the resolution of differences in gene
expression, because data from alternate longer paths in the design also
provide moderate inferential power (Townsend, 2003), Performing addi-
tional hybridizations beyond the minimum of two between two nodes is
another option. Additional replicate comparisons increase the probability
that the experiment performed will resolve large and small differences in
gene expression as statistically significant. A useful summary statistic of the
power of an experiment to resolve the statistical significance of small
should detect as significant most differences greater than about 1.6-fold. Cross-comparisons

from T2 to T4 and from T1 to T3 could be added to increase resolution. (B) Circuit design for

comparison of four genotypes; note that the graph is topologically the same as in panel A.

(C) Circuit design for comparison of three environments. This design comprises six

microarrays and should detect as significant most differences greater than about 1.6-fold.

(D) Diagram showing all 48 mRNA samples that would have to be collected to examine all of

these factors. Boxes indicate sets of mRNA samples that correspond to nodes in graphs A–C.

An examination of all of these factors in one experiment could be conducted by performing

the comparisons in panel A for all combinations of the four genotypes and three

environments, by performing the comparisons in panel B for all combinations of the four

time points and three environments, and by performing the comparisons in panel C for all

combinations of the four time points and the four genotypes. Combined into a single dataset

and analyzed together, these 288 microarrays should yield a net resolution of the statistical

significance of most differences greater than about 1.2-fold.



Fig. 3. A general example of the application of spotted cDNA microarray experimental

design applied to the study of variation within populations and among species. In this figure,

factors examined include genotype (G1 . . . G4), population (P1 . . . P3), and species (S1 . . . S3).

Nodes represent mRNA samples, and arcs represent competitive hybridizations. The

direction of the arc indicates which mRNA sample was labeled with which fluorophore

(e.g., the blunt end indicates the node labeled with Cy5, the pointed end indicates the node

labeled with Cy3). (A) Circuit design comparing genotypes G1 through G4. This design

comprises eight microarrays and should detect as significant most differences greater than

about 1.6-fold. Cross-comparisons from G2 to G4 and from G1 to G3 could be added to

increase resolution. (B) Circuit design comparing localities a, b, and c. This design comprises

six microarrays and should detect as significant most differences greater than about 1.6-fold.

(C) Circuit design comparing species S1, S2, and S3, graph theoretically the same as in panel B.

604 functional analyses [31]



[31] spotted microarrays and regulatory evolution 605
differences in gene expression is the gene expression level (GEL) at which
there is an empirical 50% probability of a statistically significant call
(GEL50). For any pair of samples, this statistic may be calculated across
all genes present on a microarray by logistic regression of the statistical
significance call on estimated GEL (Fig. 4). Additional replicates
increase the precision of estimates of GEL, decrease the GEL50 for
an experiment, and thus increase the power to resolve small differences
in gene expression.
Statistical Significance and Its Importance

Early transcriptional profiling experiments identified genes as differen-
tially expressed by a ‘‘twofold threshold,’’ so genes whose expression level
was greater or lesser by a factor of 2 in a comparison of an experimental to
a reference sample were considered differentially expressed (Alexandre
et al., 2001; DeRisi et al., 1997; Lyons et al., 2000; Sudarsanam et al., 2000).
The twofold threshold has no theoretical basis and often, inappropri-
ately, serves double duty as a signifier of both statistical and biological
significance.

Disentangling statistical and biological significance is essential to un-
derstanding the power of a study to reveal biological differences among
samples (Townsend and Hartl, 2002; Tseng et al., 2001; Wolfinger et al.,
2001). The finer resolution of smaller and smaller differences in gene
expression with increased replication demonstrated in several empirical
studies (Townsend, 2004) and in simulations (see Fig. 4) shows that a
particular transcriptional profiling experiment cannot reveal all of the
differential expression among treatments or genotypes. Rather, a transcrip-
tional profiling experiment reveals those genes whose differences in ex-
pression are sufficiently large and sufficiently consistent in measurement to
be statistically different. The number of such genes is strongly influenced
by the replication present in the experimental design.
(D) Diagram showing all 36 mRNA samples that would have to be collected to examine all of

these factors. Each mRNA sample is represented by a filled circle. Boxes indicate sets of

mRNA samples that comprise comparison diagrams A–C. An examination of all of these

factors in one experiment could be conducted by performing the comparisons in panel A for

all combinations of the three localities and three species, by performing the comparisons

in panel B for all combinations of the four genotypes and three species, and by performing

the comparisons in panel C for all combinations of the four genotypes and the three localities.

Combined into a single dataset and analyzed together, these 216 microarrays should yield

resolution of the statistical significance of most differences greater than about 1.2-fold.



Fig. 4. Logistic regressions of the frequency of affirmative significance call over log2 factor

of difference in gene expression. The logistic model plotted is that loge p/(1 � p) ¼ mx þ b,

where x is the log2 factor of difference in gene expression. Cross symbols represent estimated

expression levels from simulated data using a Bayesian analysis of gene expression level with

additive small error terms. Each cross is placed on the abscissa at the estimated expression

level, either at the top of the plot (significant, S) or at the bottom (not significant, NS). Ratio

data were simulated using the probability distribution of (Fieller, 1932) assuming a constant

coefficient of variation across samples. Logistic regressions are on the factors of difference
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Furthermore, restricting analysis to only those genes showing statisti-
cally significant changes yields much more meaningful results. Genes
whose expression level measurements were highly variable in a given study
should be filtered from large-scale comparisons because of their lack of
statistical significance (i.e., large credible or confidence intervals for
expression level). The filtered subset of expression level measurements
demonstrate vastly increased biological correlation (Townsend, 2003;
Townsend and Hartl, 2002; Townsend et al., 2003), because the well-
measured genes are not swamped by a morass of poorly measured genes.
For instance, large numbers of poorly resolved genes will by chance be
clustered within small clusters of genes that are well measured and have
true biological association, obscuring otherwise clear functional groupings.
The best verification of the results of a DNA microarray study, in the end,
is the concordance of expression data with known biology, in particular
with molecular biological data on transcription factor recruitment, meta-
bolic pathways, and protein–protein interaction. For DNA microarray
studies on population and species differences in expression, it should be
kept in mind that these molecular data are well known only for model
organisms. Thus, using prior knowledge of organismal biology to trouble-
shoot the development of DNA microarray technology and protocols is
much easier when model organisms and their close relatives are the initial
organisms of study.
estimated from simulated data comparing two samples to each other with different numbers

of replicates. (A) An example with four replicates. The model has a highly significant fit (�2 ¼
1593.1, P < .0001). The estimated intercept for the log odds, b, of a significant call versus no

significant call is �5.4 (significant, P < .0001), and the estimated slope with log2 factor of

difference in gene expression, m, is 11.5 (significant, P < .0001). The factor of gene expression

at which 50% of estimated differences were identified as significant (GEL50) was 1.4-fold. (B)

An example with six replicates. The model has a highly significant fit (�2 ¼ 1186.8, P < .0001).

The estimated intercept for the log odds, b, of a significant call versus no significant call is �6.1

(significant, P < .0001), and the estimated slope with log2 factor of difference in gene

expression, m, is 16.5 (significant, P < .0001). The factor of gene expression at which 50% of

estimated differences were identified as significant (GEL50) was 1.29-fold. (C) An example

with eight replicates. The model has a highly significant fit (�2 ¼ 1186.8, P < .0001). The

estimated intercept for the log odds, b, of a significant call versus no significant call is �7.3

(significant, P < .0001), and the estimated slope with log2 factor of difference in gene

expression, m, is 26.7 (significant, P < .0001). The factor of gene expression at which 50% of

estimated differences were identified as significant (GEL50) was 1.21-fold. (D) An example

with 10 replicates. The model has a highly significant fit (�2 ¼ 1307.2, P < .0001). The

estimated intercept for the log odds, b, of a significant call versus no significant call is �8.6

(significant, P < .0001), and the estimated slope with log2 factor of difference in gene

expression, m, is 35.0 (significant, P < .0001). The factor of gene expression at which 50% of

estimated differences were identified as significant (GEL50) was 1.18-fold.
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Comparing within and among Species

Comparisons among different individuals are possible within and
among species. Interpretation of such comparisons will be most convincing
if information is already available on the circumscription of populations
and species, preferably by phylogenetic and population genetic studies
using nucleic acid variation and appropriate methods of statistical analysis.
Typically, arrays of any kind will be designed based on sequence of one
individual in one species. To incorporate natural variation into microarray
studies, it will be necessary to use arrays designed from the sequence of one
individual for competitive hybridizations among genetically different in-
dividuals or species. The utility of the array will decrease as the genetic
distance increases between the ‘‘design’’ individual and the ‘‘experimen-
tal’’ individuals. Detailed knowledge of populations and species will allow
researchers to select individuals with increasing genetic distances to test the
range of a microarray to aid experimental design. Fragmented DNA can be
used as the probe in these experiments.

In terms of design, and in keeping with the aforementioned guidelines, it
is ideal to make direct comparisons among the most closely related popula-
tions and/or species and then work toward more divergent comparisons.
This approach is needed because sequence divergence will increase with
phylogenetic distance and confound the hybridizations at each spot on a
microarray (Bozdech et al., 2003; Letowski et al., 2004; Nagpal et al., 2004).
In principle, a consistent low level of divergence across genes should not
present a serious problem, because any decrease in hybridization due to that
divergence will then be approximately constant across genes in that sample
and a global normalization will compensate appropriately. However, there
is considerable variation in the rate of divergence of genes (Graybeal,
1994). Thus, experimentalists must be wary of interpreting differential
hybridization as representative of differential expression when mRNA is
derived from divergent organisms.

Although divergence in DNA sequence creates a difficulty for the study
of gene expression in closely to moderately diverged species, it is an
advantage for the study of gene expression in very distantly related species
that live in close association. For instance, many of the socially important
and evolutionarily interesting questions concerning fungi involve mutual-
isms with other organisms, ranging from pathogenesis to symbiosis. Micro-
arrays containing neighboring spots of DNA sequence for genes of both
species can be used to simultaneously measure gene expression in the two
organisms with little concern for cross-hybridization. Thus, single arrays
composed of sequences homologous to both partners may be used to
identify pools of candidate genes that are coordinately regulated in both
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partners in the mutualism (Johansson et al., 2004). Microarrays are
designed to measure mRNA level and profile transcription throughout
the genome, but they also can be used to discriminate between alleles at
single nucleotide polymorphism (SNP) loci throughout the genome (Stein-
metz et al., 2002). Therefore, experiments can be designed to combine QTL
analysis and transcription profiling in progeny from parents with pheno-
types important to adaptation: pathogenicity, industrial production, and
so on.

Disturbance Involved in Harvesting mRNA

A key element to good competitive hybridization experiments is to
minimize disturbance of the organisms in the process of harvesting RNA,
to avoid accidentally studying the effects of the disturbance. Moreover, it is
absolutely vital to confine differences among experimental treatments to
those being tested in the experiment; any other differences will confound
analysis and interpretation. Consider with extreme care how samples will
be handled immediately before RNA harvest. An incautiously designed
microarray experiment may easily reveal only the manifold effects of
centrifugation, filtering, or other lab manipulations. Of course, the same
experimental protocols cannot be applied to all organisms, for example,
contrast the swift and uniform arresting of bacterial cell activity at �80� or
with ethanol (EtOH)–phenol treatment (Zimmer et al., 2000) with the
quite variable treatments of human and other primate organs before
RNA extraction (Enard et al., 2002). Even routine experimental manipula-
tions can have a strong effect on transcription, as exemplified by a study of
gravitropism in plants that showed significant changes in tran-
scriptional profile due solely to the minimal handling of plants before
RNA extraction (Moseyko et al., 2002).
Technical Protocols

DNA Microarray Construction

DNA microarrays are multiplexed Southern hybridizations (Fig. 5).
Using terminology that mirrors the functional roles of the nucleic acids in
Southern hybridizations, the ‘‘probe’’ in a microarray experiment is unla-
beled and affixed to a solid substrate (the coated glass slide). The ‘‘target,’’
counterintuitively, is washed over the multiple affixed probes and consists
of fluorescently labeled cDNA made from mRNA harvested from the
organism. Spotted microarrays can be constructed by deposition of poly-
merase chain reaction (PCR) products for each and every open reading



Fig. 5. Schematic diagram of the steps employed to create spotted microarrays from

polymerase chain reaction products and to perform a comparative microarray hybridization.

610 functional analyses [31]
frame (ORF) (Eisen and Brown, 1999), by deposition of oligomers (70 or
50 nucleotides) designed from predicted ORF sequences, or by deposition
of random clones from a cDNA library or even from random clones of
genomic DNA fragments. Oligomer arrays and cDNA arrays appear to
have similar sensitivities for differential gene expression (Lee et al., 2004),
but there are advantages and disadvantages to each method (Table I).
For example, it is easier to design oligomer probes that minimize cross-
hybridization, but 10% sequence divergence randomly located within a
70-mer long oligo may reduce hybridization intensity by 64% (Bozdech
et al., 2003). Conversely, whole-ORF PCR products do cross-hybridize but
appear not to be very sensitive to SNPs (Ranz et al., 2003).
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ORFs may be amplified from clones or from genomic DNA by means
of the PCR. Longer ORFs may be amplified with any of a variety of special
polymerase kits that have high processivity. Each amplified product should
be confirmed for correct length by agarose gel electrophoresis. Amplified
DNA may be precipitated in 96-well format with isopropanol, washed with
70% EtOH, and resuspended in a salt spotting solution such as 3� SSC.
DNA is commonly spotted on polylysine-coated glass slides (Eisen and
Brown, 1999) or �-aminopolysilane (GAPS)–coated glass slides (Corning,
Corning, NY), using a microarraying robot (e.g., http://cmgm.stanford.edu/
pbrown/mguide/index.html). GAPS slides are more expensive but have a
better shelf life and tend to be less variable in quality.
Extraction of RNA and Reverse Transcription

The key reagent in transcriptional profiling is the RNA harvested from
an organism. This RNA is used as a template for reverse transcription to
make cDNA for competitive hybridization against the affixed probes on
the microarray. RNA is best extracted from flash-frozen pellets of tissue or
culture grown in meticulously maintained common garden conditions. The
flash-frozen matter should have its RNA extracted in a manner that will
not result in mRNA degradation (i.e., performed rapidly upon or while
thawing). Nucleic acids may be EtOH precipitated, washed, dried, and
redissolved in TE buffer. Yield ranges from organism to organism, but a
spectrophotometric ratio of absorption (260 nm/280 nm) of about 2.0
indicates a clean preparation without much protein contaminant. mRNA
may be purified easily using a Qiagen Extraction Kit (Valencia, CA), which
contains columns that retain poly-A RNA and allow much of the tRNA
and rRNA to pass through. For eukaryotes, reverse transcription of eluted
mRNA may be performed with oligo-dT primers of an appropriate length
to bind with the poly-A tails of mRNA from the organism of study. For
both eukaryotes and prokaryotes, the reactions may be primed with ran-
dom hexamer primers, supplied with deoxyribonucleic triphosphates
(dNTPs), performed by a reverse transcriptase such as Superscript II. To
provide a ligand for dye labeling, amino-allyl-dUTP is incorporated into
the cDNA along with the dNTPs. After at least 2 h of reverse transcription,
the approximately 20-�l reaction should be stopped with 10 �l of 1 M
NaOH and 10 �l of 0.5 M of ethylenediaminetetraacetic acid (EDTA),
and the mix is incubated at 65� for 15 min. Then 25 �l of 1 M HEPES
pH 7.5 is added to stabilize the solution.

Both total RNA and purified mRNA have been successfully used as
templates for the production of labeled cDNA for microarray hybridization.

http://cmgm.stanford.edu/pbrown/mguide/index.html
http://cmgm.stanford.edu/pbrown/mguide/index.html
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Also, both oligo-dT alone and a mixture of oligo-dT and oligo-dN primer
have been used as primers to reverse transcribe mRNA. For the most part,
both purifying the mRNA and using oligo-dT alone help decrease noise
caused by errant cDNAs from tRNA and rRNA. However, using total RNA
is cheaper and faster, and using oligo-dN primers can dramatically increase
signal. The tradeoff must be examined in each particular microarray experi-
mental context, because these factors interact with other aspects of experi-
mental setup such as spotted DNA fragment size, slide chemistry,
deposition solution, and hybridization conditions. Figure 6 may be used as
a guide for optimization.
Cyanine Dye Coupling

To retain the cDNA and discard unincorporated nucleotides, the pro-
ducts of reverse transcription are diluted and filtered in a Microcon-30
microconcentrator, which retains the long polymers of cDNA but not
unincorporated nucleotides. Typically, an initial 10-fold dilution of the
reverse transcription reaction product is followed by a 20-fold concentra-
tion. Two more rounds of 20-fold dilution and concentration complete the
cleanup. NHS dye may be bound to cDNA via amino-allyl-dUTP residues
by raising the pH. To 10–13 �l of purified concentrate, 0.8 �l of 1 M
NaHCO3 pH 9 can be added, with an appropriate NHS-cyanine dye
aliquot. This coupling reaction is incubated in the dark at 25� for 75 min
and then stored in the dark at 4� and used in less than 24 h. The labeled
cDNA may then be purified with a QIAquick column. This elution of about
55 �l of purified cyanine-labeled cDNA may also be stored at 4� and
should be used in less than 24 h.
Fig. 6. Diagram relating signal and noise characteristics for microarray hybridizations

conducted using messenger RNA (mRNA) or total RNA and poly-T or polyT þ polyN

primers used in the reverse-transcriptase reaction for production of the labeled mRNA target

to be washed over the microarray of fixed probe spots.



[31] spotted microarrays and regulatory evolution 613
Hybridization

For each competitive hybridization, the labeled target cDNAs from two
samples are used, i.e., one labeled with cyanine-3 and one labeled with
cyanine-5. The labeled cDNA is concentrated to 20 �l in Microcon-30
microconcentrators, combining appropriate cyanine-3– and cyanine-5–
labeled paired samples. Note that 1.5 �l of poly-dA oligomers of appropri-
ate length for the organism of study may be added to block poly-T tails of
the cDNA. Next, 3 �l of 20� SSC and 0.5 �l of 1 M HEPES pH 7.0 are
added. The mix can then be filtered of any dust or residues with a
wetted (10 �l ddH2O) Millipore-0.45 �m filter; 10% sodium dodecyl sulfate
(SDS) is added, and the mix is then boiled for 2 min to denature the nucleic
acids. It should then be cooled at 27� for 10 min. Hybridizations using
labeled target at temperatures above room temperature can result in ex-
tremely high background fluorescence. A microarray slide is set in a hybri-
dization chamber. To keep the slide stable within the chamber, deposit
drops of 3� SSC on the underside of the slide, allowing them to adsorb to
the slide corners and the chamber bottom. To prevent dehydration of the
labeled cDNA solution from beneath the coverslips, 3� SSC is added to the
hybridization chamber wells. A coverslip (LifterSlips are very convenient
for this purpose) should be cleaned with EtOH and then placed over the
printed microarray. The labeled cDNA mix is then injected at the corners of
the coverslip, and the chamber is sealed and then placed level in a 60�

waterbath, to be incubated at 60–63� for 12–15 h to reach equilibrium
(Sartor et al., 2004).

Array Wash

Hybridized microarray slides can be washed by repeated plunging in a
solution of 387 ml of purified water, 12 ml of 20� SSC, and 1 ml of 10%
SDS, and rinsed by repeated plunging in a solution of 399 ml of purified
water and 1 ml of 20� SSC. The array should be scanned as soon as
possible; if there must be a delay, the array may be stored in the dark,
but for no more than 2 h.

Data Acquisition and Analysis

Fluorescent DNA bound to the microarray may be detected with a
GenePix 4000 microarray scanner (Axon Instruments, Foster City, CA),
using the GenePix 4000 software package to locate spots in the microarray.
Other scanners are available, as are alternative, open source, and freely
downloadable scanning software, such as TIGR’s Spotfinder (http://www.
tigr.org/software).

http://www.tigr.org/software
http://www.tigr.org/software
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Normalization

Fluorescence intensity values are commonly adjusted in each channel by
subtracting the average background intensity observed surrounding the spot
from the observed foreground intensity of the spot. Typical foreground
intensities for quality microarray hybridizations should be 10 or more times
as intense as background. However, some spots do not achieve this ideal even
in excellent hybridizations. To eliminate signals that are most prone to
estimation error, any spot can be excluded from analysis if both the Cy3
and the Cy5 fluorescence intensities for that spot are within 3 standard
deviations of the distribution of intensities of the background pixels for that
spot. This procedure avoids artificially inflated measurements of relative
expression for the competing mRNA samples to that spot due to near-zero
background-subtracted intensity values in one fluorescence channel.

Relative expression levels for the two competing dye-labeled samples
may be normalized by linear scaling of the cyanine-5 values so the mean
cyanine-5 and cyanine-3 background-corrected intensity values of nonex-
cluded spots are equal when hybridizations are of uniformly high quality.
This straightforward method should then yield a linear log-log cyanine-3–
cyanine-5 intensity and no further normalization will be necessary. If the
relationship is not linear because of systemic technical problems, it may be
useful to use LOWESS smoothing or other statistical approaches. Howev-
er, curved or abnormally shaped log-log regressions generally indicate poor
and therefore misleading data, regardless of applied statistical sophistica-
tion. It should be considered by the experimentalist whether extra analyti-
cal efforts to glean the most information from poor experiments are more
fruitful than repeating hybridizations and refining experimental technique.

Data Analysis

Multifactorial experimental designs, as described earlier, should be
analyzed statistically. Two major methods for analysis of such designs
are analysis of variance (ANOVA) methods (Kerr and Churchill,
2001a,b; Wolfinger et al., 2001) and Bayesian methods (Townsend, 2004;
Townsend and Hartl, 2002). The details of these approaches are adequately
covered in the primary literature. The two approaches yield consistent
results when used to analyze the same dataset (Whitfield et al., 2003), so
the choice of method may come down to a combination of philosophical
preference and practicality. ANOVA presents a powerful method that can,
with a fair degree of statistical savvy on the part of the user, be tailored
tightly to incorporate normalization and downstream analysis (Jin et al.,
2001) into a single cohesive whole. A powerful and flexible method for the
Bayesian analysis of gene expression levels (BAGEL), from multifactorial
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experiments, has been implemented to analyze normalized data on multi-
ple platforms in a straightforward and freely available software package
(http://web.uconn.edu/townsend/software.html).
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[32] Methods for Studying the Evolution
of Plant Reproductive Structures:

Comparative Gene Expression Techniques

By Elena M. Kramer

Abstract

A major component of evolutionary developmental (evo-devo) genet-
ics is the analysis of gene expression patterns in nonmodel species. This
comparative approach can take many forms, including reverse-transcrip-
tase polymerase chain reaction, Northern blot hybridization, and in situ
hybridization. The choice of technique depends on several issues such as
the availability of fresh tissue, as well as the expected expression level and
pattern of the candidate gene in question. Although the protocols for these
procedures are fairly standard, optimization is often required because of
the specific characteristics of the species under analysis. This chapter de-
scribes several methods commonly used to determine gene expression
patterns in angiosperms, particularly in floral tissues. Suggestions for
adapting basic protocols for diverse taxa and troubleshooting are also
extensively discussed.

General Considerations for Working with RNA

RNA is, by nature, a less stable molecule than DNA and there are
many sources of RNase in the environment, which can lead to its rapid
degradation. These facts often lead to trepidation on the part of research-
ers who are not experienced with RNA work. However, such concerns are
largely unnecessary because simple precautions can effectively prevent

Copyright 2005, Elsevier Inc.
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